Climate change hotspots in the CMIP5 global climate model ensemble
نویسندگان
چکیده
We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20th-century baseline), but not at the higher levels of global warming that occur in the late-21st-century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.
منابع مشابه
Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble
Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation ...
متن کاملPrediction of Prediction of Climate Change Impacts on Kharkeh Dam Reservoir Inflows with Using of CMIP5-RCP Scenarios
The objective of this research was to investigate the effects of climate change on precipitation and temperature parameters of Karkheh Basin and inflow to Karkheh dam reservoir. This was conducted by applying 21 GCM models under CMIP5 scenarios. The error indices of R2, RMSE and MAE models with the observed precipitation and temperature data were examined to find the appropriate GCM model, MRI-...
متن کاملAssessment of forced responses of the Australian Community Climate and Earth System Simulator (ACCESS) 1.3 in CMIP5 historical detection and attribution experiments
The Australian Community Climate and Earth System Simulator (ACCESS) coupled climate model version 1.3 participated in phase five of the Coupled Model Intercomparison Project (CMIP5) with an initial contribution of high priority experiments. Further standard experiments have since been conducted with ACCESS1.3, including an ensemble of three simulations for the historical period (1850–2005) for...
متن کاملEnsemble mean of CMIP5 Sea Surface Temperature projections under climate change and their reference climatology
A software was developed in the framework of the GEOWOW project for computing the mean of the output of an ensemble of climate change models from the World Climate Research Programme (WCRP) Coupled Model Intercomparaison Project Phase 5 (CMIP5). The ensemble mean for the time projections of the Sea Surface Temperature (SST) under climate change and the corresponding climatology were computed: t...
متن کاملSimulation of the climate change impact on monthly runoff of Dez watershed using IHACRES model
Identification and analysis of flow fluctuations in consequences of climate change is one of the most important factors in water resources management planning and this is vital especially in areas where large crowds are engaged in agriculture. Dez watershed, as an agricultural hub in the country, is one of areas that river flow fluctuations caused by climate change can affect a large population...
متن کامل